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Abstract--The potential flow solution for flow of fluid past dispersed objects in a "unit cell" is used to 
derive several macroscopic properties, including the mean pressures in the phases and on the walls, the 
momentum and kinetic energy density, the force function and mechanical energy flux. These properties 
are derived from the "resistivity" of the unit cell, which has a tensorial character in general. Various 
macroscopic forms of Bernoulli's equation relate the properties. Equations of motion for uniform arrays 
of cells are derived. Various other features, such as minimization of kinetic energy density and forces at 
concentration jumps, are analyzed. 

Key Words: two-phase, potential flow, averaging, macroscopic properties, Bernoulli, momentum flux, 
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1. I N T R O D U C T I O N  

Since the publication of books by Wallis (1969) and Ishii (1975), there has been a concerted attempt 
to develop a "two-fluid model" containing conservation equations to describe two-phase flows at 
a macroscopic level. Wallis (1969) asserted that this model could be useful for some flow regimes 
but cautioned about the appropriate evaluation of all terms (he himself made an error in 
formulating the added mass contributions!). Ishii (1975) provided a more general theoretical 
foundation in terms of averages but offered little help with the unknown terms, most of which 
represent interactions between the phases. Later authors made the leap to postulated closure laws, 
many of which can be shown to be inconsistent when applied to simple limiting cases that can be 
analyzed rigorously (Wallis 1992a). 

Another approach (e.g. Batchelor 1970; Biesheuvel & van Wijngaarden 1984; Biesheuvel & 
Spoelstra 1989) has been to solve specific problems from a fundamental standpoint, usually 
involving some approximation but revealing relationships that might have a more general validity. 

For didactic purposes there is a lack of illustrative examples of both methods that are sufficiently 
simple to be solved completely without invoking any hypotheses about closure. These provide 
instructive models for the rigorous derivation of macroscopic laws resembling their microscopic 
ancestors and containing no "missing" terms, perhaps with some deafly-stated idealizations. They 
serve to illustrate relationships, such as the interplay between Reynolds stresses in the fluid and 
internal stresses in dispersed particles, that may be harder to grasp and derive at a more sophisticated 
level. They also exemplify techniques, such as energy methods, and may reveal how apparently 
independent properties can be derived from each other. At the same time, it is clear what is "left 
out" and what idealizations are being made, so that extrapolation to more complex situations can 
be done with awareness. From the pedagogical viewpoint, this approach may be a useful precursor 
to more sophisticated presentations [e.g. section 3.4.1 of Drew & Wallis (1992) or section 4 of this 
paper] which, though more general, involve few conceptual advances and are harder to assimilate. 

The purpose of this paper is to use basic methods of potential flow theory to derive the 
macroscopic properties of the fluid and the objects in unit cells that are sufficiently simple in 
structure to allow essentially exact mathematical solution. These unit cells are of interest in their 
own right, since they can form the basis for physical or numerical experiments. Moreover, they 
may also be used to represent a set of identical objects, or arrays of objects, arranged along the 
axis of a tube and in repetitive two- and three-dimensional arrays. To emphasize the equivalent 
treatment of these several systems, the analysis will be developed, as far as possible, in a way that 
applies to all of them. However, the one-dimensional cells are not merely simpler cases of 
three-dimensional ones but exhibit separate features, such as the average pressure on the wall and 

989 



990 G.B. WALLIS 

conservation of energy for each phase along the same "pipe" along which both the phases are 
constrained to flow (which is not the case in three-dimensions). 

Such an approach is common in many branches of science; for example, for the determination 
of the effective electrical and mechanical properties of composite materials, an analogue applied 
to two-phase flow by Wallis (1989) and Smereka & Milton (1991). The method is to solve the basic 
equations at the microscopic level in the unit cell, using either analytical or numerical methods, 
and to perform suitable integration to determine macroscopic properties. In some cases, as in this 
paper, it transpires that theorems can be deduced that establish constitutive equations, or other 
fundamental laws that are obeyed by the macroscopic properties, often resembling the form of laws 
already known at the microscopic level. When properties can be interrelated, the key question then 
becomes, as in thermodynamics, whether some minimum set of independent properties suffices to 
provide a complete description. For the class of two-phase systems considered here, all the results 
can be expressed in terms of one dimensionless property, fl, resembling a resistivity that is derivable 
by solving Laplace's equation, fl Depends on the geometrical structure of the two-phase interface 
and is generally a tensor. 

Solutions to Laplace's equation are relatively easy to obtain for simple geometries, such as a row 
of equidistant spheres in a round tube (Cai & Wallis 1992), enabling several of the relationships 
between properties to be checked for specific cases. Such results have been obtained by Cai (1992) 
using numerical methods and found to be consistent with equations presented in this paper, 
particularly those describing the average pressure on the wall of a cell and within the dispersed 
phase. The present paper, however, is limited to the presentation of general theorems and their 
interpretation in conceptual terms which are highlighted by being written in italics in the ensuing 
text. 

Figure 1 shows four examples of unit cells. Figure 1 (a) represents one element of a long row of 
identical axisymmetrical equidistant incompressible objects located along the axis of a tube. In 
figure 1 (b) there are many objects (particles or a porous medium) in the cell but, if the results here 
are to be valid, they must be constrained to move with the same velocity in the direction of the 
tube axis. 

Independent objects which are not arranged symmetrically will experience non-uniform forces 
of interaction when there is any motion and the structure of the array will be subject to continual 
change. Moreover, when particles do not have uniform velocities, their "thermal" motion is an 
additional physical property which cannot be specified solely in terms of the average velocities of 
the phases. The way in which these "thermal" fluctuations in structure and velocity relate to the 
average motion is a separate major topic. This paper is concerned with the (limiting) zero particle 
temperature case. 

To simplify conceptualization we start by assuming that the array is suitably symmetrical such 
that the fluid velocity is axial at the ends of the cell, though it is not a necessary restriction. At 
this stage we avoid consideration of how to treat particles that are cut by the cell boundaries by 
decreeing that there is a particle-free zone on all the faces of every cell. If necessary, this restriction 
can be lifted by invoking the characteristics of "cyclic" cells. 

Figure l(c) shows a rectangular, brick-like, unit cell of sides X, Y and Z (X~ for short) with an 
object of three-fold symmetry at its center. We shall later consider more general objects with other 
shapes and locations. Figure 1 (d) is a rectangular unit cell with contents resembling those in figure 1 (b). 

The fluid is inviscid, incompressible and irrotational and obeys the normal laws applicable to 
potential flow; in particular, the microscopic velocity is the gradient of a potential: 

u = - V ~ b .  [1] 

Though the application of potential flow theory to two-phase flow has all the limitations that 
apply to its use for single-phase flow, it nonetheless provides solutions for several limiting or ideal 
situations and serves as an example of how a self-consistent macroscopic theory may be developed. 

In this paper we first analyze the simple case where the dispersed phase and cell are at rest, 
introduce the concept of resistivity, which was the basis of Wallis's (1989) analysis of isotropic 
dispersions, and relate it to the polarization of the particles or the interphase impulse. An extension 
is then made to describe moving cells in order to derive average equations of  motion for each phase 
and expressions for the macroscopic momentum and energy density. 
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Figure 1. Various unit cells: (a,b) one-dimensional; (c,d) three-dimensional. 
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In section 3 further volumetric averages are taken in order to derive the momentum flux, force 
function, mean pressures and stresses within the phases and at boundaries, energy fluxes and 
Bernoulli's equation, i.e. several "macroscopic" properties that appear in mechanistic analysis and 
conservation laws. All of these results are strictly valid only for homogeneous arrays of cells and 
some mathematical justification must be given if they are to be applied to cells that change their 
shape and structure, for instance, in response to convective acceleration or concentration gradients. 
Some results, such as Bernoulli's equation and the related equation of overall energy conservation, 
apply to flows from one region to another, independent of the path. We note that it is customary 
to use the transport properties of composite media (and those derived from kinetic theory) even 
when there are gradients in properties and it would be interesting to investigate the order of 
approximation involved in following a similar treatment (e.g. Wallis 1991) of two-phase flows. 

In section 4 some analogous results are derived for three-dimensional cells. Though possibly useful 
for the development of more universal continuum models, these generalizations represent 
no conceptual advances and are more remote from direct numerical and experimental verification. 

2. INTERPHASE IMPULSE, EQUATIONS OF MOTION, MOMENTUM AND 
ENERGY DENSITY 

2.1. Base Case--Stationary Particles 

Consider first the "base case" in which the dispersed phase is at rest. When it is necessary to 
make a distinction, velocities, potentials and fluxes in this reference frame will be assigned the 
subscript "0". The net flow of fluid is the same at any section perpendicular to the x-direction, 
which is the pipe axis for the one-dimensional flow patterns: 

Q0 = fu. dAli. [2] 
Integrating [2] over the cell from x = 0 to L, 

QoL= fu'dA,idL= fuxdVl. [3] 
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Dividing by the total volume of the cell, V = AL, we get 

Jo =Q° f u.dV, v, f u dV, 
: T - -  V V'-------~ --  El W, [4] 

where ¢1 is the fraction of the volume occupied by the fluid and w is the average fluid velocity in 
the x-direction, or the "relative" velocity; J0 is the fluid flux in this reference frame. 

For the three-dimensional cells, [4] can also be expressed in vector form as 

I u d Vi 
• [5] J ° = E t w =  V 

The total fluid momentum in the x-direction in a one-dimensional unit may be expressed as 

p, fudV,=-p, fV4JdV,=-plf4,ds=-p,[(4,~o-4,Bo)Ai-fOods'], [6] 

where ~A0 and ~bn0 are the potentials at the ends of the cell, which are uniform because of symmetry, 
ds is an element of the surface pointing outward from the fluid and ds' is an element of area on 
the surface of the object, pointing out into the fluid. For the three-dimensional cells the equation 
has the same form but with three components to the term involving potential difference. 

We define fl (Wallis 1989) as the factor by which the potential difference across the unit cell is 
increased by reason of the presence of the object in the base case: 

~bB 0 - ~bA0 = fiLjo. [7] 

fl Resembles a dimensionless resistivity dependent on the geometry of the cell and can be 
determined by solving Laplace's equation. 

The three-dimensional case may not be isotropic and fl will have components fli in the three 
directions, therefore 

q~Bo, - c~ao, = fl, X, jo,. [8] 

As a result of symmetry, we consider the axes of the cell to be principal axes so that coefficients 
linking fluxes and flows in different directions do not appear; fl~ are the principal components of 
a tensor resistivity, [J. Then, from [4], [6] and [7], for the one-dimensional cells, 

f~b0ds' = ( ~ -  I)A(c~Bo--(gAo)i=(1--fl)we~V, [9] 

while the equivalent of [9] for the three-dimensional cells is 

f~b0 = (I - #).we,, [10] 
d s '  

V 

where I is the unit tensor (identity matrix). 
The quantity in [9] is the same as the net dipole moment of internal sources that could have been 

used to "generate" the dispersed phase (Wallis 1991, 1992b) and could be called the polarization. 
Equations [9] and [10] indicate that, for a given structure of the cell, this polarization is proportional 
to the relative velocity and described by a constitutive relation (Wallis 1992b). Moreover, the 
left-hand sides of [9] and [10] are measures of an interphase impulse necessary to set up the motion 
from the rest. This mutual impulse is an example of an interaction term in the two-phase flow. If 
fl can be determined by solving Laplace's equations, [9] and [10] are constitutive equations relating 
the mutual impulse to the relative motion. 

2.2. Moving Particles--Equations of  Motion 
We now set the particles in motion in any of the cells in figure 1 by superposing an additional 

potential field, 

q~2 = --v2"r, [11] 
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which acts only in the x-direction in the one-dimensional case. The average fluid velocity is then 

Vl = w + v2 [12]  

and the potential everywhere is 

= q~0 + ~2. [131 

Integrating [11] over the particle(s) in a cell 

f c~2~'= - f v2"rds'= --v2E2 V, [14] 

where E2 is the fraction of the volume occupied by the particles. 
Adding [14] to [9] and using [12] and [13] we obtain, when both phases are in motion, 

V =(1--~)ElW--e2v2----(1--el~)W--E:l [151 

for the one-dimensional cells and, more generally, for the three-dimensional case: 

f 4 '~ '  

V -- ( I -  ~ l # ) ' w -  ~2Vl. [161 

Equations [151 and [16] will be useful for evaluating one of the key terms in the net force, due 
to surface pressure, acting on the dispersed phase (hereafter called the "object") during a transient 
in which both phases accelerate. For a start we consider the base case when the object is at rest 
and the flow is steady. Since pressures and velocities are identical at corresponding points at both 
ends of the unit cells, a momentum balance shows that there is no net force on the object (barring 
body force fields which can be added later). Therefore, the external force is applied to it is 

r2=fpds'=f(po x ~ . , 2 ~ o ,  PI u2fk, --2~'l"om" = - T j  o =0 ,  [17] 

where Bernoulli's equation was used with P0 being the stagnation pressure. 
Consider now a more general condition where there is a gravitational field "g"  and both phases 

are accelerating. The equation of motion of the object is 

P2 V2t2 -- F2 + P2gV2 -- .[pds', [18] 

where p may again be derived from Bernoulli's equation as 

P = P 0  - ½ p i u  2 + Pl ~ -  + g  . ( r  - r0)PI • [19]  

The stagnation pressure, P0, may be a function of time, but at any instant its integral, Sp0ds', 
is zero. The velocity is related to the base case velocity by 

a = u0 + v2 [20]  

and the rate of change of ~b in the lab system, a~ ~at, is related to the rate of change of ~ in a system 
moving with the particles, dd)/dt, by 

_- d__~ _ v2" V~0 -- ~ + v2 "u0. [21] 
c3t dt 

Using [20] and [21] in terms in [19] in which those expressions appear, we have 

1 2 . ~ $  d $  
= - 2 P l u o - 2 p v 2 + p l - ~ .  -~pu - t -p l '~  .t 2 t 2 [22] 

Substituting [22] into [19], integrating over the particle surface and using [15] and [17], [18] becomes 

P2 V2~'2 = F2 + P2gV2 + Pl V[(~l /~  - 1)q¢ + ~;2¢'1)] - plgV2. [23] 

All the constant terms in [20] vanished when integrated over the surface of the object. 
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Dividing [23] by V2 and defining the external force per unit volume of phase 2 as 

F2 
f2 = ~ ,  [241 

we obtain the equation of  motion of  the dispersed phase in the form 

E, [3  - 1 
P2i '2 - -  P l i ' l  - -  P l  W = ['2 d-  P 2 g  - -  P t g "  [25] 

£2 

The role of  the interphase impulse, from [15], in the case where such a motion is set up suddenly, 
is evident in the second and third terms on the left-hand side. 

The corresponding result for the three-dimensional case is obtained by using [16] instead of  [15] 
and is 

P2i '2 - -  P l i t l  - -  P !  (E:I~ - -  I)'v~ = t"2 d-  P 2 g  - P~g. [26] 
E2 

Now, the overall momentum equation for the entire volume of fluid plus the particle in figure 
1 is 

ptV~¼~+p2V2t2=f2VE+p~gV~+p2gV2- (AxApx i+AyApy j+A~Ap~k) ,  [27] 

where Ap is the pressure difference between (any) corresponding points at the ends of  the control 
volume and only the/-direction is relevant for the one-dimensional systems. Dividing [27] by the 
total volume V and defining the macroscopic pressure gradient as 

[27] may be written as 

_ •  Ap~ Ap, 
VP = i +- -y-  j +- -~-  k, [281 

and 

El 
p2v2 - 2e-- Pl (El ~ -- I) '  qV = f2 + P2g -- VP 

pl*= + p, (E,/~ -- I ) . *  = p,g -- VP. [33] 

Inertial coupling in this situation has a tensor nature, as does the classical added mass for a 
non-rotating single particle. If  the cell is isotropic, [32] and [33] collapse to [30] and [31] which are 
then valid in both the one- and three-dimensional cases. 

[32] 

PlEl~l + P2E~2 = ~2f~ + (PlEI + P2E2)g -- VP. [29] 

Equations [25] and [29] may now be combined to give further results which are convenient. 
Adding E1 × [25] to [29] gives 

• El 
PzV2 - ~ pl(E~fl - 1)~ = f2 + P2g - VP, [30] 

whereas subtracting e2 x [25] from [29] gives 

p,~ ,  + p,(E~/~ - 1 ) ,  = p , g  - v P .  [31] 

Equations [30] and [31] were derived by Wallis (1989) using a different approach (energy 
conservation) and interpreted as equations of  motion for each phase with the term involving 
describing inertial coupling or added mass effects. While purists might regard [25] as being more 
truly the "equation of motion of the particles", [30] and [31] have the virtue of  symmetry and are 
more directly related to two-fluid models of two-phase flow. The combination (E1/~ - 1) is a 
geometrical parameter that can, in principle, be derived by solving Laplace's equation and has been 
called the exertia (Wallis 1989), since it describes the "external inertia" associated with the 
dispersed phase when it moves relative to the fluid. 

The equivalents of [30] and [31] for the three-dimensional ease are 
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While many authors have written down equations of  the form of [30]-[33], there has been 
remarkable confusion about how the inertial coupling term is to be evaluated (e.g. the use of  
Zuber's added mass coefficient to replace El fl - 1). An unequivocal definition has been given here 
in terms of  quantities that are directly derivable from solutions to Laplace's equation. 

2.3. Coefficients of Added Mass 
Equations [15], [30] and [31], or the equivalent three-dimensional versions, may be used to define 

a "coefficient of  added mass". For example, if there is no mean pressure gradient or gravitational 
force, [30] and [31] may be combined to give 

[ ~Elfl -- 1 ~7 = t"2. [341 ,: o +pi\ /j 
In another case an external force f2 might be applied and the constraint imposed that there is 

zero net flux, as in a closed-end container: 

Then [26] becomes 

El ' l  "~- E2 '2  = 0 .  [35] 

I (  fl -1  1)l=f2+ p2g--plg. [36] '2 P2 + Pl e2 

The quantities in parentheses in [34] and [36] might be defined as coefficients of added mass for 
those particular circumstances, but they are not the same quantity. In fact, the added mass 
coefficient depends on the boundary conditions imposed on the unit cell, specifically the relationship 
between the potential difference across it and the net flux, or bulk velocity, through it, which can 
be expressed as an external impedance. In [34] there is no external impedance, whereas in [36] the 
external impedance is infinite, A whole range of  added mass coefficients may be obtained by 
connecting a series of  unit cells to an external fluid loop, much as a battery with internal resistance 
may be connected to an external circuit. The external loop specifies a third relationship between 
VP and EItj + q ' 2  which is to be solved simultaneously with [30] and [31] to determine the 
relationship of  f2 to '2. Cai (1992) presents an analysis and experimental verification of  these 
concepts. 

In yet another case, the only external force applied might be a macroscopic pressure gradient, 
in which case we obtain from [30] and [31] 

'2[/22+ (p!--p2)~11] = -VP, [37] 

and no clear definition of  an added mass coefficient emerges. The "added mass" requires careful 
interpretation and clear definition and is best derived from the more basic equations of  motion. 

2.4. Momentum and Energy Density 
The quantities appearing in [15] and [16] are the interphase impulse associated with the motion 

of  particles. For motion in an infinite fluid this impulse is directly related to the overall momentum 
and kinetic energy of  the fluid (Lamb 1945). A similar approach may be taken in the present case, 
except that it is now necessary to include integrals around the boundaries of  the unit cell. 

The net fluid momentum in a cell with both phases moving is 

,3., 

where the integral is taken over all of  the boundaries and ds is an element of the boundary pointing 
outward from the fluid. Dividing [38] by the cell volume and splitting the surface integral into parts 
on the outer boundary of  the cell and on the enclosed particles, the momentum density is 

f udV, f rk ~' 
mj=pt' V =PI(~ba-tpA)Ai+pI" V [39] 

IJMF 18/6---N 
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Using [7], [1 1] and [13] in the first term and [15] in the second we obtain, for the one-dimensional 
cells, 

ml = Dl(el f lW ÷ v2) - -  pl  [(el fl - -  1)W ÷ e2Vl] [40] 

which reduces to 

ml = Pl el vl [41] 

as expected. 
The corresponding results for the three-dimensional cells are 

ml, = Pl (~ba, - t~A, ) -~ ÷ 01 -- [42] 

which becomes, using [8], [11], [13] and [16], 

ml, = Pl (el fliwi + v2,) + Pl [(wi- el fliw,) - Qvli] [43] 

or, on simplification, as expected, 

mli = Pl el vii. [44] 
The kinetic energy density follows in a similar way from the basic relation: 

½P' f u2dV' Pl f~pu'ds. [45] 
kl = V = -2--V 

The part of the integral around the particles is transformed by using the boundary condition 
at the particle surface: 

(u - v2)" ds = 0 [46] 

so that, for the particles, 

f u'd = [47] 

Evaluating [45] for the entire fluid surface, including the cell boundary and the particles, we have, 
for the one-dimensional cells, 

kt = ½ Pl ( 0 s  - CA) i" (El Vl + E2V2) Pl -- ~- v2" [(Q fl -- 1)w ÷ Qvl] [48] 
L 

= ½ Pl [(el flw ÷ re)" (El vl ÷ Qv2) - v:" w(el - l) - v2"vl e2] [49] 

= ½ p, El v, ~ + ½ p, E, (El ~ --  1)W ~ [50] 

which is consistent with Wallis (1989). 
The corresponding result for the three-dimensional cells is 

k l = P l ~ [  -OA,).4,j,+v2, f o ,is;] [51] 

= Pl ~ [(El fl, w, + v2,)(el v,, + e:v2,) - v2,w,(e, 8 , -  1) - v2,v,,e:] [52] 
2 i 

1 2 ~ PlEI/,J I ÷ ½ Pie1 Z(elfli-- 1)W 2 . [53] 
i 

A considerable advantage of the above methods over some in use in the literature is that there 
is no need to "go to infinity" since integrals are only needed around surfaces in the unit cell. 
Possible problems of convergence are thus avoided. 

Some alternative models (e.g. Zuber 1964) are based on a unit cell withfixed boundaries inside 
which the dispersed phase is free to move. This removes the integral around the cell boundary from 
[45], but not from [38], and enables the kinetic energy to be determined, leading to a definition of 



MACROSCOPIC PROPERTIES OF A TWO-PHASE POTENTIAL DISPERSION 997 

the "added mass". However, this constraint is artificial for the motion of a large array since the 
cells move with the particles, except perhaps near boundaries. Nevertheless, the two approaches 
may lead to estimates of some macroscopic properties, such as added mass coefficients when there 
is no net flux, that are (approximately) compatible (Wallis 1989). In general, the problem of a unit 
cell with impermeable boundaries is not the same as the corresponding problem with equipotential 
boundaries and the two solutions cannot be derived from each other. Each situation is physically 
realizable, but under different constraints. There is also a further class of  problems involving small 
numbers of cells (e.g. four equidistant spheres on the axis of a closed-end tube) that are intermediate 
between the two limiting cases and are best treated on an individual basis if accuracy is desired. 

2.5. Non-symmetrical Particles, More General Cases 

If  the particles are unsymmetrical or uncentered in the unit cell (i.e. they have any shape and 
are anywhere), things are a little more complicated. There are, in general, no planes "A"  and "B" 
across which the potentials are equal. However, because of the cyclic nature of the unit cells, 
potential differences across corresponding points at opposite ends of the cell are equal and the 
quantity ($B - ~bA) is still uniform and unequivocal. In the case of the particles in a tube, only the 
component of [17] along the axis is zero and there may be transverse forces on the particles from 
the fluid. Equations [5]-[31] are still valid as far as one-dimensional motion in the direction of the 
tube axis is concerned, however, as long as the particles are constrained to remain in the same 
position in the unit cell. A similar unspecified (mutual) force in the direction perpendicular to the 
relative motion appeared in Wallis's (1989) analysis that was based on energy conservation. 

The cyclic nature of the three-dimensional rectangular array assures that in the base case the 
velocities (and hence from Bernoulli's equation also the pressures) repeat at corresponding points 
in the unit cells. Therefore, there should be no hydrodynamic force acting on the particles in the base 
case. The analysis leading to [32] and [33] is equally valid for this situation. Similar "cyclic" arguments 
may be used to include cases where particles are cut by the borders of control volumes. While theorems, 
similar to those presented here, may be derived for such general cases as a simple generalization, 
the actual derivation of properties may be complicated by uncertainty in specifying unequivocal 
boundary conditions (unless more conditions, such as planes of symmetry, can be imposed). 

The general case, when there are no unit cells and the particles are both randomly distributed 
and randomly oriented, has to be treated in some statistical way that is beyond the scope of  the 
present analysis. It would be interesting to see if the form of [32] and [33] can be obtained for this 
situation. However, severe new complications arise because interactions between particles cause 
continual rearrangement of the structure of the array. Moreover, ensemble averaging approaches 
should strictly consider all possible interactions and positions of all particles, which is hard to 
accomplish except in the dilute limit. 

In all of the above analysis the unit cells were all identical and there were no gradients of the 
macroscopic variables, such as E~, v t and v2. In the case of convective accelerations the unit cell 
itself distorts and / I  changes in response to the flow field, producing an interesting challenge to 
analysis. There is a possibility that the structure of  the particle array might depend on the entire 
previous flow history, which would be awkward for making practical predictions. The case where 
the structure "relaxes" to some standard form and ~ depends only on the volumetric concentration, 
E2, is discussed by Wallis (1991). 

3. M OM E N T UM FLUX, MEAN STRESSES AND PRESSURES,  B E R N O U L L I ' S  
EQUATION AND ENERGY CONSERVATION FOR 

O N E - D I M E N S I O N A L  UNIT CELLS 

In this section it will be shown how several macroscopic properties can be derived once the 
resistivity, p, is derived as a function of the geometry of the cell. The properties are first derived 
with particles at rest and then with particles in motion. 

3.1. Base Case 

Since no external forces are applied, the sum of  the rate of momentum transport and the internal 
forces across any cross-section perpendicular to the axis of the cell must be constant with a value 
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denoted by F, resembling the "impulse function" defined by Shapiro (1953) and sometimes called 
the "flow force": 

F= f (p + plu~x) dAl-  fA axdA2; [54] 
AI 2 

ax is the normal tensile stress in the x-direction within the particle. Integrating [54] over the length 
of  the unit cell we obtain 

FL = f (p + p,u~ox)dVl - f CrxdV2 [55] 

or, dividing by the total cell volume V = AL, 
F 

= Elp  I -t- PIEI ( U g x )  - -  E2 (O 'x ) ,  [56] 

where the symbol ( ) denotes the volume average over a particular phase and Pt = 4,p) for the 
fluid. The momentum average may alternatively be expressed as 

(ugx) = w 2 + (ag~), [57] 

where w is the average velocity of the fluid and a0x is a fluctuating component that gives rise to 
"Reynolds stresses". 

An alternative approach is to use control volumes which go around the particles and contain 
only fluid. The one shown in figure 2 extends from x = 0, where properties are described by the 
subscript "b" ,  to x = x. Areas in the flow are perpendicular to the x-direction with elements dAt, 
while elements of areas on the object are denoted by ds' pointing out from the surface. Since 
pressures on the sides cancel in a symmetrical unit cell, the momentum balance for this volume 
is 

[pb i + pUb~(Ubxi + Ubyj + ub~k)] dAl + pds' - [pl + pux(uxi + Uyj + u:k)] dAn = 0, [58] 

which is valid for all x. We integrate it from 0 to L and divide by the total volume, V = AL. 

b 
y--y 

I- I 

I ds'.... 

A A 

v I 
b 

0 x x = x  L 

Figure 2. Control volume, with x-dir~tion fae~s in the fluid, passing around the dispersed phase. 
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The integral involving pressure is evaluated "by parts": 

I:t" E p~"  dx = x | P ~ ' I  - I xp~ ' .  [59] 
• o dO do  dO 

The first term on the right is zero because Igpds" is the net force on the object and already 
deduced to be zero from an overall momentum balance. 

The resulting three components of the "averaged" equation [58] are: 

f x p  - -  F ds'x 
T + E,p, + p(w: + <a0L >)E, =:~ + p(uL)b = 7 '  [a~] 

f xp ds" r 
T + p <~ox ~0, >E, -- p (U0x U0y)b [61] 

and 

f xp ds" 
- -  JI- p <UOx~Oz>El = p(UOxUOz)b, [ 6 2 ]  V 

where the "bar" denotes an average over the cross-sectional area and the tildes denote fluctuations 
from the volumetric average. 

The three integrals appearing in [60]-[62] are products of the particle volume fraction and 
components of the particle stress or interfacial stress tensor I xtp ds~/V. For the symmetrical 
centrally-located object that we have assumed, all of the terms in [61] and [62] vanish. In a more 
general situation the equations express a relationship between the interfacial stress tensor and the 
Reynolds stress tensor. 

Comparing [60] with [56] confirms the identity derived by Batchelor (1970) and Wallis (1989), 
relating the average stress in the particle to the pressure on its surface: 

= fxp_ds'~ [63] 
- < a x >  j v~ " 

Bernoulli's equation (we neglect body forces in the rest of this paper) is valid for any point in 
the fluid: 

p +½p, u~ =p0, [64] 

where P0 is the stagnation pressure of the fluid. Making use of the theorem 

fu dV.= = =fljgV=flEIW2VI [65] 

we may integrate [64] over all of the fluid and divide by the fluid volume to obtain (Wallis 1989): 

Pl + ½ Pl w2EI fl = P0, [66] 

which is a special case of the averaged Bernoulli equation for the fluid. 
Now, the flow force F is not independent but can be derived from the kinetic energy in the cell 

by using the approach used by Wallis (1989). We consider a long tube with length l >> L of which 
a fraction " f "  contains unit cells of the type shown in figure l(a), while the remaining (1 - f )  
contains pure fluid (figure 3). The net potential drop across the tube, A~, is related to the fluid 
volumetric flow rate, Qo = Ajo, by 

A~b = l[1 - f  +ffl]A = BQo, [671 

where B plays the role of a net "resistance". The total kinetic energy of the fluid is, using the same 
approach as in [65], 

K = ½p, ASQo = ½P, A$2 [68] 
B 
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I a 
I v I 
I 

f -  + ' ' o ' d '  o QO --~ Jo F e  ~ , ~ , , I 

I I I I 
I 
I 

l a  

! 

' 0  "% C)) 
I 

(l-f) t f t  

Figure 3. A long tube with a fraction " f "  occupied by unit cells containing particles. 

From Wallis (1989), the work done by moving any of the fluid-solid boundaries in figure 3, while 
maintaining Ark fixed, equals the resulting change in fluid kinetic energy, i.e. 

or, from [67], 

dK = -½ p, ~ dB [69] 

dK = -½ p, Q20 dB. [70] 

We now consider a perturbation which all of the unit cells in figure 3 increase in length by an 
amount dL, giving rise to a corresponding change in f, where 

d f _  dL .  [71] 
f L' 

it being understood that the extension dL occurs in a way that preserves the cell's symmetry. 
Since this changes the net kinetic energy, a force must have done work. Now, the only external 

force that acts in figure 3 is the one that restrains particles near the interface with the pure fluid 
and extends over a few unit cells. If l is sufficiently long, this force, F,, may be regarded as 
concentrated at the interface between the pure fluid and the region containing particles, and we 
have 

F~l d f  = dK = -½ p, Q2o dB; 

dB may be evaluated from [67] and the result is 

In view of [71] and [4], this may be written as 

Fo= ' "~ ( ~# ) - [ p J o A  fl + L - ~ -  I 

[72] 

[73] 

[74] 

which resembles [3.113] in Wallis (1989), except that fl is not a function of fluid volumetric fraction, 
El, alone but depends on all the dimensions which define the unit cell, such as its length and 
diameter as well as the dimensions and arrangement of the dispersed particles. F, is an external 
force which must be applied to keep the array in figure 3 from collapsing. It is related to the particle 
pressure (Wallis 1989) and the "effective" pressure mentioned by Gcurst (1991), which play a role 
in determining the stability of the flow, since a particle "gas" must have a positive compressibility. 

The momentum balance between sections "a" and "b" in figure 3 is 

A(p.  + p~v2.) - F, = F. [75] 

Now, the region "a"  may be chosen far enough from the interface for fluid conditions to be 
uniform, therefore 

va =J0, [76] 
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and Bernoulli's equation may be used to give 

I "2 
P, = P0 - ~ Pl J 0. [77] 

Substituting [66], [74], [76] and [77] into [75], we obtain 

F 1 .2 (  /i 0/1) [78] -~ =Pl + ~ P d o /I +--+ L-~-~ 
El 

which can be combined with [56] to give ( 0,) 
, -2 + ~ + L ~  . [791 P l E I ( U 0 2 x ) - - E 2 ( O ' x )  = £ 2 P 1  +~PIJ0 /i El 

I f / i  is determined, as a function of the geometry of  the unit cell, the term in parentheses in [78] 
and [79] can be evaluated and therefore the flow force, which is important in overall momentum 
balance, is known. The combination of  the Reynolds stresses and the particle stress is also known, 
but not the two quantities independently. 

Similar results for the stresses in the other directions are most easily obtained if the unit cell is 
rectangular, with overall dimensions Y and Z in the y-  and z-directions. The flow force in these 
directions reduces to the mean wall pressure times the wall area and the equivalents of  [56] are 

:,~ = E I p l  + plE~ (u0~y) - E~(%) [80] 

and 

:w~ = E,pl + pIEI ( u g , )  - E~ (o~ ) .  [81] 

The equivalent of  [58] for the y-direction follows from the control volume, sketched in figure 
4, extending from y = 0 to y = y and passing around the dispersed phase: 

fpwdA.yj+f fpds ' - f [pj+puy(uxi+u, j+uzk)]dA,=O.  [82] 

The momentum fluxes and pressures at the ends x = 0 and x = L cancel. Integrating [82] from y = 0 
to y = Y and dividing by V we get three components: 

f yp ds" 
v + p(~0,a0x)~,  = o,  [83] 

day 
y=y ~- - _ . __ . 

Y 'l ds' I 
' dawy l 
t.. I 

im 

0 x L 

Figure 4. Control volume, with y-direction faces in the fluid, passing around the dispersed phase. 
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and 

f t yp dsy 
E=p~ + 

V 
- -  + p ( C, oyao~ >E, =p.~ [84] 

f yp ds'~ 
V + p (a0ytT0~)E~ = 0. [85] 

Again, the integrals that result are components of the interfacial stress tensor (S xip ds~ / V) and 
all of the terms in [83] and [85] are zero for a symmetrical centrally-located object--in other words, 
the axes of the cell are principal axes of this tensor. 

Comparing [84] with [80] we obtain a result resembling [63], with y replacing x. Similar 
expressions are valid for the z-direction. 

Adding [79], [80] and [81] leads to 

ffwy +/~wz = 2£1Pl + Pl El ((Uox)2 + (Uoy)2 + (UOz)2) 

E l ~ " 

Now, from [651, 

(ug:,) + (U~y) + (u~)  = fiE, w z [87] 

and the term involving particle stresses can be written 

(ax) + (ay)  + (a~) = -3p2, [88] 

where P2 is the mean bulk stress in the particle. Therefore, [86] can be rewritten as 

P.y+Pw~=2(E,pj +E2pO+E2 :--pl--½plj  2 +-- [89] 
E2 ~-Z , 

w~ich is the special case of the equation for the mean wall pressure. 
The average pressure in the dispersed phase may also be computed using an energy method 

(Wallis 1989). The boundaries of the unit cell are kept fixed, as well as the applied potential 
difference, ~s - ~bA, while the particle undergoes a uniform volumetric strain (figure 5). If r is the 
vector from a fixed origin (normally the centroid of the particle, otherwise the strain involves 
displacement as well as change in volume; however, if there is no net force on the particle, no work 
is done in a displacement and any origin of strain may be chosen) to a point on the surface of the 
particle, this uniform strain is described by 

dr = 7 r, [90] 

where 7 is constant over the particle. The change in particle volume at each point on its surface 
is 

dV2 = dr.ds'  = 7r.ds' [91] 

and the net change in volume is 

dV2=fdV~=~,fr.as'=3~,v~. [92] 

The work done by the interfacial pressure during this expansion is 

fpdV~=f~,pr.ds'=~,,fp(xds'~+yds'~+zds;). [93] 

The terms on the right-hand side of [93] are three components that can be replaced by mean stresses 
in the particle, as in [63]. Using [88] and [92], we then have 

f p  II2 = 37p2 V2 = P2 I/"2. [94] d d 
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/ / / / / / / / / / / / ~ . , / / / . / / / / / / / /  

¢8 

A s - - ' - - -  - - ..,,, j s '  

I \ 
I I 

I x / /  

/ / . / / / / / / / / / / / / / / / / / . ,  ~ 

Figure 5. Particle(s) undergoing uniform strain. 

CA 

In this case 

and the equivalent of  [70] is 

and, since 

we obtain 

L 
B = fl ~ [95] 

dK = -½ p, Q~ L dfl = --½ p,j2 V dfl [96] 

dV 2 -- V dE2, [97] 

p2  = l ,o - ½ p , y  o ~ , N ) L . "  . [98] 

The differential in [98] is evaluated by keeping the overall dimensions of  the cell fixed and 
imposing a uniform strain on the particle; it provides a direct method of  evaluating the mean 
pressure in the particle from knowledge of /L  

The mean wall pressure may also be evaluated by a similar energy method in which the wall 
undergoes a uniform strain (figure 6). If  dAw is an element of  area of  the wall, pointing outwards 
from the fluid, the work done by the wall on the fluid during the strain is 

Ww = - / T p r ' d A w .  [99] 

The net volume change of  the cell is 

d V = dr .  dAw = 7 r. dAw = 27 V 

and the change of its area of  cross section is 

[100] 

dA = 27A. [101] 
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¢A 

Figure 6. The wall of the unit cell undergoing uniform strain. 

We define the average pressure on the wall of the cell as 

f p r ' d A w  _ f p r - d A ~  
Pw= f'  2V ' [1021 

J r'dAw 

which in the case of the rectangular brick-like cell becomes 

Pw =/~wY +/~wz 2 [103] 

Then [99] can be expressed as 

Ww = -Pw d V. [1041 

The change in resistance of the cell is evaluated from [95], noting that both fl and A change 

L L 
dB = ~ dfl - ~-5 fl dA. [105] 

The energy theorem for this case becomes 

(Po - p w ) d V  = dK = -½ p, Q2 dfl - f l - - ~ ) ,  [1061 

where [100] and [101] were used. Rearranging and introducing the fluid flux, Jo, we finally obtain 

[ [ k k e l J  
= +, - , ) . . . . .  Pw P0 ] # l J  [107] 

The differential is to be performed observing the constraints indicated and provides a direct method 
of computing the mean wall pressure when fl is known. Equation [107] has been verified by Cai 
(1992) for several examples of exact solutions to the sphere-in-tube case [figure l(a)]. 

Now, the three partial derivatives OB/&2, Ofl/OA and OB/OL are not independent. In a uniform 
strain, with its origin at the center of the cell, affecting all dimensions of the cell and the phase 
interface, the shape of  the flow field is conserved and therefore fl is constant. In general, we have 

dfl = ~ dL + ~ de2 + ~-~ dA, [1081 
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while for global uniform strain 

dL 1 dA 1 d~2 

L 2 A  3 E2 

Since this does not change fl, [108] becomes 

O = L ~L + 2A ~A + 3E2-~E 2. 

Using [98] and [107] in [110], we get 

(2fl + L ~fl~ + 3E2(Po --P2) + 2(p.  - P o )  = 0. ½ p|J ~ aL/ 
We now form (2El -- E2) x [66]: 

(2E, -- E2) (Po -- P, -- ½ P,j2 ~ )  = O. 

The sum of [111] and [112] is 

1005 

[109] 

Ill0] 

[ I l l ]  

[112] 

L 
T = -- [115] 

D2 

The time average of  the flow force at a fixed plane is 

if <F> = -~ [(p + p, u~) dA, + (P2v~ - ox) dA2]dt, [116] 

which may be transformed, using [114] and [115] and relating velocities to the base case, into 

,f <F> = L  {[p +P'(v2+u°x)2]dV' + ( p 2 v l - o ~ ) d V 2 } .  [117] 

Since 

vl = v2 + <u0~ > = v2 + w, [118] 

[117] may be expressed as 

<F> = A[elpl + elplv~ + e292v:: + elPl(<U2ox> -- w ~) -- q<Ox>], [119] 

which contains no surprises, resembling the left-hand side of  [3.148] in Walfis (1989). To make 
comparisons with the right-hand side of  the latter equation we make use of  [79] and find that the 
flow force may be expressed in terms of  average properties and fl as 

<F> V~+E2p2v~+E,p, w2(E, fl -- 1)+E2 +½p,j2o +~2OL)I" A =~lP l+ElP l  I [120] 

while the entire cell goes by in time 

Pw=(E,P1+E2P:)+~ 2--Pl E-2 ~-L ' [113] 

which is a more general version of  [89] and shows that the mean wall pressure differs, in general, 
from the volumetric mean pressure in the dispersion unless the term in square brackets vanishes. 
The condition for this to occur is presented later in [121] and [122]. 

3.2. Moving Cell 
3.2.1. Flow force 

We now consider the pattern of  unit cells to move along the pipe at speed v2, which is also the 
speed of  the particles. The time for a slice of  the cell of  thickness dx to pass a stationary observer is 

dx 
d t  = - - ,  [ 114 ]  

V2 
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The term in square brackets in [120] simplifies in the special case where fl depends only on e2, 
as was assumed by Wallis (1989) and should be true for any dispersion that maintains an isotropic 
random structure. From the geometry of the cell we then have 

dL des de! 
. . . .  [121] 

L £2 (2 
and, therefore, 

(~1 L0fl)  1 .2 (tiff jc 0fl ~ [122] p l + ½ P l j  2 + - -  = P l + ~ P , J o  

which equals P2 for such a system (Wallis 1989). In this case the final term in [113] vanishes and 
the mean wall pressure is equal to the volumetric mean pressure in the two-phase mixture. The 
general problem of computing the mean wall pressure for any array is not so simple, however, since 
the structure will itself change during the virtual displacement described by [99]. 

3.2.2 Bernoulli's equation for  the f luid 

Bernoulli's equation at any point in the fluid in the moving unit cell is 

O~ [123] po = p + ½ Pl u2 - pl --~-f , 

where ~ is the microscopic velocity potential; P0 is a constant throughout the flow and may be a 
function of time. Since a "reference" potential, ~br, can always be added everywhere in the flow, 
both sides of [123] are arbitrary by the amount p~ O(a,/Ot at any time and we may always choose 
this reference so that Odp/Ot is set to zero at a particular "stagnation point", where u also vanishes. 
However, P0 is not the pressure at all stagnation points because there may be an additional 
contribution from O(a/Ot there. 

When the unit cell moves with velocity, v2, &k/dt is non-zero as a result of the potential 
distribution in the base case moving past an observer in the laboratory frame; this contributes a 
portion 

- v2" V t ~ 0  = v2" u0 = v2 u0x. [124] 

However, if we simply move the original potential distribution past the observer, the potential will 
rise by the amount 4~B - ~bA with the passage of each unit cell and this will create a rate of change 
of the macroscopic potential ~. Introducing the reference potential ~,, we then have 

t3O ~s - ~bA O~, [125] 
Ot - v2 L Ot 

while, from [124], 

t3~ O~b, [1261 0---[ = V2Uox O t  " 

Combining [125] and [126] to eliminate 4~r we obtain 

O---t = O--'t + v2 ,U°x -L ,] Ot + v2(Uox - flel w). [127] 

Equation [127] is then used in [123], which may be integrated across slices of  fluid passing a fixed 
location and over the time of passage of a unit cell, as in [116]. This is then transformed, using 
[114] and [115], in the same way that [117] followed from [116], to give 

'f[, °°l P'=E o-½p,(v2+Uo)Z+p, v2(uox-~e,w)+p,-5- [ dV,. [1281 

With the help of [65] and [124] this becomes 

0¢ 
2 l 2 elflv2w + p t  [129] Pl =P0 - ½PLY2 - ~ple l~w - p, "07 ' 
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which may be expressed, using [118], as 

1 2 ~0 
PI =Po - -  ~plv] - -  ½ P i ( E , ~ f f  - -  1)(v~ - -  v~) + p , - ~ - .  [1301 

Equation [130] is the averaged Bernoulli equatwn for the fluid (Wallis 1989, 1991). It interrelates 
the macroscopic properties of any unit cells, not necessarily of the same structure or orientation, 
as long as they are connected by a continuous path through the fluid. The idea of averaging 
Bernoulli's equation was used earlier by Voinov & Petrov (1977) who ignored terms involving the 
square of velocity perturbations due to the particle. However, these terms are of the same order 
as the other components of kinetic energy (Wallis 1991) and must be retained. 

When the flow is "macroscopically steady", the term O0/at may be disgarded. However, it 
requires careful evaluation when there are unsteady features in the flow field, even though these 
are far away from regions that may appear to contain flows that are locally steady. This point may 
be illustrated by the example sketched in figure 7. 

In figure 7(a) the conditions are macroscopically steady, with flow from a single-phase region 
'T '  to a region "II" where particles are at rest, the mean fluid velocity is Vl and the volume fraction 
is El. In figure 7(b) a velocity v2 has been imposed on the entire flow. Because of the movement 
of the interface between regions I and II, the flow is macroscopically unsteady, though it appears 
locally steady in each region. 

In the steady flow case the fluid velocity, from continuity, is El Vl in region I and the mean fluid 
pressure follows from [130] 

1,~ : . 2  [131] Pll =Po - 2 YlUlUl" 

In region II the corresponding result is 

PlII= P0 - ½ Pl EI ~v~. [132] 

alVl 

[ II 
: | 4  

l 

[e Qv,[O,® ®: 
! 
[ = X 

a) 

I 
[ I I  I _ 1 . .  

- [ -  = V2 

= v i i  [ ~ ~ Q l ~  

VlH 

b) 

Figure 7. Region I--pure fluid; region ll--unit cells. (a) Stationary particles and cells; (b) particles and 
• cells with speed v2. 
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Subtracting [132] from [131] we obtain 
1 2 

Pu --PIll = ~ PlEIVI(~ -- El). 

The macroscopic potential gradients in regions I and II in figure 7(a) are 

d ~  
d x  ~ IEI ~)1 

and 

[1331 

[134] 

and 

vu = qvl + v2 [136] 

vm = vl + v2. [137] 

Using these values in [130], the mean pressures in the two regions are found to be 

0 ~  [1381 Pn =Po--~Pl(qVl +V2) 2 +pl Ot 

and 

Pm= P0 - ½ P, (v, + v2) 2 + ½ 01 (q ~ - 1)[(v, + v2) 2 - v~] + p, o~ll [1391 
c?t " 

Now, by use of a suitable reference potential, either of the unsteady terms in [138] or [139] may 
be removed and the flow regarded as "steady" in that region. However, both of these terms cannot 
be removed simultaneously because, from [134] and [135], 

= - - v 2 \ ~  x - -  =vlv2q( l - - f l ) .  [140] 

There is now enough information to combine [138]-[140] and obtain [133], which is true in either 
reference frame. 

We note that the stagnation pressure, P0, is not unequivocally defined, for the situation 
represented in figure 7(b), until a statement is made about the choice of reference potential. 

3.2.3. Energy conservation in macroscopically steady flow, Bernoulli's equation for the dispersed 
phase 

For the base case the mechanical energy conservation equation is equivalent to Bernoulli's 
equation and the only useful result to be derived from it is [66]. 

When the unit cells move at speed v2, the time average of the energy and work flow across a 
section fixed in space is 

I;[ l 2 
<I~> = ~ (~ p, u~ + p) u x dA, + (3 P2V2 - ax)v2 dA:] dt. [141] 

We use [114] and [115] to transform time integrals to space integrals and [123] with the steady 
flow version of [127] to simplify the first term on the right-hand side of [141]. The result is 

< /?>--g  [Po+p,v~(uox-~tw)l(v~+uox)dV,+ 1 (½p2v2,-ax)v~dV2. [142] 

The term involving ox in [142] is the average rate at which work is being done by the solid phase 
as it passes the measurement plane. This may also be evaluated by considering the work done by 
the part of the interphase boundary which has crossed this plane as the entire particle passes by, 
namely Spx.ds'. Since the rate at which particles pass by is v2/L, the rate at which they transfer 
work to fluid beyond the measurement plane is (v 2/L)S p x. ds', which is compatible with the final 
term in [142] in view of [63]. 

The mean fluid velocities in figure 7(b) are related to those in figure 7(a) by 

d~n 
- -  d---~-~- t E l l ) l "  [ 1 3 5 ]  
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When all the terms are worked out in [142], we obtain, using [4] and [118], 

- -  4" ~ P2E2V2 - -  V 2 E2<O" x >, [143] A =P°EIVI+V2Eqpz<u2x>+ElPlWV2(V2--ElflVl) 1 3 

which can be rearranged, using [79], to 

A = p0(E, Vl + e2v2) + v2 - P 0 £ 2  + ~P2E2v2 - Dl El I)2 W(E, fl - -  1) 
L_ 

(P _ I , + ½pi [ f ,  + ) )  I . [144] 

The first term on the right in [144] is the product of the stagnation pressure and the overall 
volumetric flux. If both phases originate in a region, designated by the subscript "s", where each 
has negligible velocity and a common stagnation pressure, the net energy flow leaving this region 
is 

~s = poAs(£1Vl + •2V2)s • [145] 

Moreover, from the continuity equation for each phase 

QI = As(El Vl )s = AEI Vl = Aj, [146] 

and 

Q2 = As(E2v2)s = AE2V2 = A J2. [147] 

Using [145]-[147] and equating Es with J~, because of energy conservation in the absence of 
external forces or body force fields (note that a similar development is not possible for 
three-dimensional cells), we find that the term in square brackets in [144] must be zero, i.e. 

po=Pi+~p,w ', \ - ,  -F~'~--L)+]O2V;--E'EP'v2w(E,#-- I). [148] 

In the more general case where the phases do not have a common stagnation pressure, P0 is the 
stagnation pressure of the fluid alone. Equation [144] can then be expressed as 

<~>=po(Q,+Q2)+Q2 --Po'b[p2V2--E2PIV2W(EIfl--1)+P,-b~plW E, "[-~2~- ~ . [149] 

As a result of energy conservation and continuity, the term in square brackets in [149] is seen to 
be invariant of the motion. It is a special form of Bernoulli's equation for the dispersed phase, 
resembling [51] in Wallis (1990) and reducing to the steady flow version of that result when [122] 
is valid. In general, however, P2 is derived by considering growth of the particles at constant L, 
as in [98], and the final two terms in [149] are not the same as the bulk pressure in the particles 
but describe a directional stress along the direction of mean motion, derived from [79]. 

Setting the square-bracket term in [149] equal to "C", which is to be evaluated somewhere in 
the flow, [148] is valid in the more general form 

p o + C = P l + ½ p ,  w~e2(~l+L~_~) 1 2 ~2PlV2W(Elfl_ l). [150] 

Equation [150] may be combined with [130] to obtain a relationship between the velocities of 
the phases which is valid between any points in the flow field: 

, 2 ,  ~ (Elf 1)[  2 ~ 2El - v ~ ) ] +  ~,E, ~ o L / =  "ip2v2--'iPl v, ½Pl -- V __V2J[_ ( V 2 V  ' 1 . : .2 IV  L ~fl'~ - ~ P l ' ~ l - - + - - x ; ; !  C .  [151] 
E2 

The constant C is zero if the phases have a common stagnation pressure. 
If C is known, perhaps from the conditions at one point in the system, and the flow rates are 

specified in [146] and [147], [151] is the third equation which makes it possible to solve for Vl, v: 
and El (or e, or L), given the other geometrical parameters. For example, these parameters could 
be the diameter of suspended spheres and the diameter of a straight pipe in which they are flowing. 
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L, fl, E 1 and E2 are all functions of  each other, once the other dimensions are specified. The way 
in which the two-phase mixture gets from one region that is macroscopically uniform (i.e. unit cells 
forming part of  a "continuum" can be defined) to another is irrelevant; the properties in the two 
regions are related by [151]. For example, it is not necessary to solve any differential equations or 
to specify the shape of the inlet nozzle in order to predict the conditions in a straight tube that 
is fed by given flow rates of spheres and fluid from a reservoir, as long as the flow is potential. 

3.2.4. Minimization of kinetic energy density 
We will now show that [151], with C = 0, is equivalent to minimization, subject to the constraint 

of known flow rates, of  the kinetic energy per unit volume, which is (Wallis 1989) 

2 1 2 
k = I E l P l V  1 -~- ~E2P2D2 + / ~ l P l  W2(E I fl - -  1). [ 1 5 2 ]  

The velocities are related to the (known) fluxes of  each phase by [146] and [147], and [152] may 
be expressed as 

J I .  I J 2 -  k =~PI--+~P2--*~ElPl (El~ - 1). [153] 
\E, E U 

Differentiating [153] with respect to the length of  the cell, L, and replacing 0~l IOL by -O~2/OL we 
obtain 

dk r j~ j2 fjJ 2y,y2 
+elplw 2 el-~-L-flcgL J. [154] 

Using [121] and [151], [154] reduces to 

dk ~2 C [155] 
dL L 

and therefore the kinetic energy per unit volume of the entire flow is a minimum if C = 0. 
Interesting conclusions may also be drawn about  the flow force. We replace the first Pl in [120] 

using [130] (with Oc~/Ot = 0 for steady flow) and the second Pl in [120] using [148]. The result is 

<F) l 2 I .  ^ 2 . 2  A =po+$Elplvl+~t:~, ~+½EiPlW2(elfl-- 1), [156] 

which is truly remarkable when compared with [152] and seems to indicate that the flow force is 
also minimized when C = 0. If  C # 0, E2C should be added to the right-hand side of  [156], because 
[150] rather than [148] is needed in its derivation. Using [152] we then have 

<F) 
=P0 + k + E:C. [157] 

Therefore, differentiating with respect to L and treating C as a constant: 

a<F> 
OL Ok OE2 
A = 0--Z + C b-£" [1581 

Using [121] and [155] it is found that [158] is identical to 

O<V> 
0---~ -- 0, [159] 

which is valid independent of  the value of  C. 
Although [159] appears to show that <F> is a minimum, further study may be required. The 

constraints in all of  the above differentiation were that the flow rates of the phases Q, and Q2 (and 
hence j, and J2 in a given pipe) were speofied and C was constant. This makes it possible to solve 
for v, and v2, using [146], [147] and [151] and one is not at liberty, in general, to vary a further 
function <F>. 
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3.2.5. Existence of solutions 
Equation [151] may have multiple solutions or no real solutions, depending on the system 

properties and the flow rates. The existence of  two coincident solutions would indicate that 
small changes, or a stationary wave, could occur in a duct of  constant area transporting given 
flow rates. 

In the special case where C = 0 (common stagnation pressures), [151] is a quadratic for the 
velocity ratio (v2/v~). If the system is an isotropic dispersion, we may use [121] to convert 
(L/~2)~8/OL to (--08/0E2) and make use of  the functional dependence of  8 on q. For example, 
if Maxwell's expression for the exertia (Wallis 1989) is chosen: 

El8 -- 1 =--E2 [160] 
2 

then, by differentiation, 

and [151] can be solved to yield 

8 a S =  __l [161] 
E~ &2 2 

1 + 2P2\ 1/2 

[162] 

which was previously derived by Wallis (1989). 
If, on the other hand, Guerst 's (1985) "marginal stability" expression is used, 

we have 

E2 
E I 8 - 1 = ~ ( 1 - 3 ~ 2 ) ,  [163] 

8 = 1 + 23- E2 [164] 

which is equivalent to polarization OVallis 1991) with a dipole moment that is unaffected by the 
interactions between particles. The solution to [151] with C = 0 is then 

[164] 

/ 2  + P2\ 1/2 

= 

To investigate more general conditions for the existence of  solutions we rearrange [151] to 

21-(p2 - -  pl)V22 -- Pl v2 w ~ (8 -- 1) + ½ Pl w2£12 L 08 ffi c .  [1661 

With C - - 0 ,  [166] is a quadratic for wq/v2q, which has real solutions if 

08 [167] pJ ( P  - 1)  2 > - pl) 2L 

or, for an isotropic dispersion, if 

. , 2aP Pl(8 - 1) 2 > - ~ 2  - P, ~2 ~-~q • [168] 

Equal roots occur, giving a condition for stationary waves, when [167] is an equality and then 

P2 _  1 

WEI ffi Pl _-- 8 -- 1 [169] 
v2q 8 - 1  08" 

~2L~'~ 

LIMF 18/6--O 
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The "structural properties", (fl - 1) and Ofl/t3L occurring in [167] and [169], are the same as those 
appearing in [74]. We note that a simple criterion for "static stability" of the particle matrix in figure 
3 is that OFddL be positive, i.e. 

20~- + L~--5 < 0 [1701 

which becomes, using [121] for an isotropic structure, 

< 0. [171] 

If a general expression for the exertia is chosen of the form 

Err - 1 = -~(1 - nE2), [172] 
Z 

then [171] will be satisfied if 

n > 3. [173] 

Marginal stability occurs if n = 3, which leads to Geurst's equation [164]. In this case Fe is 
identically zero in [74] and the particle matrix has zero compressibility. Equation [169] gives the 
same result only if WEI = --V2, i.e. if v2 = --J0, which corresponds to a system in which the net flux 
(EtVl + ¢zV2) is zero, which is unlikely to occur in a flow originating from a common stagnation 
pressure unless additional external forces play a role. 

4. STRESSES, MOMENTUM FLUX AND B E R N O U L L I ' S  EQUATION FOR 
T H R E E - D I M E N S I O N A L  CELLS 

4.1. Base Case 

Consider the brick-like unit cell described earlier, with overall dimensions X, Y and Z. No solid 
walls are involved and there is flow through all sides of the cell, the fluxes being related to the 
corresponding potential differences by [8]. 

The fluid kinetic energy per unit total volume is 

k = lpl  ~jo, A~(dPBo,- C~Ao,) [174] 

or, using [8], 

k = i p, ~ fld 2 = ½ Pt e2 ~ fli w2. [175] 

As a corollary of [175] the average value of u s, over the volume of the fluid, is 

(u~ ) = ¢1 ~ fl, w~. [176] 

Therefore, the equivalent of [66] is Bernoulli's equation in the form 

1 1 P l ~  fl.d2 =P0. [177] 

The force function in the x-direction is still given by [56], but now the Reynolds stresses result 
from fluctuations produced by the three components of the relative velocity, w~. We adopt the 
nomenclature that uoxj is the x-component of the microscopic fluid velocity in the base case resulting 
from the component w~. 

From the symmetry of the cell, 

(Uoo) = 0, (Uox~Uo.j) = 0; i # j .  [178] 

Equation [176] is actually the sum of the three components, 

(u~xi + u2oy~ + U:o,i ) = E1 fl~W~, [179] 
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and [56] may be expressed as 

& 
AC = EIP, + Pl El E <U~x' > -- E2 <fix 5" [1801 

To obtain the equivalent of [78] and [79] we consider the system sketched in figure 8. It resembles 
figure 3 except that the portion which contains particles is made up of brick-like cells having 
dimensions X, Yand Z. There are superposed potential differences A~x, Aq~y and Aq~, over the entire 
system. 

The overall fluid kinetic energy can be written in a more general form of [68]: 

r=½o,\ +___z+ B,/" 
The resistance in the x-direction is made up of two parts in series and [67] is again valid, therefore 

1 
B, = ~ (1 - f+ff l , , ) .  [1821 

In the other directions the resistances of the open cells and those containing particles are in 
parallel, therefore 

1 IZ I Z f  
By Y (1 - f ) - +  y By [1831 

and 

1 IY  1 l Y f  [184] 
-~ = ~ ( -- f ) + - ~  fl~ . 

The potential differences can also be expressed as 

A~bx= YZB~ox, Ad&= rflyJoy, Ac~= Zfl,jo~, [185] 

where Joy and Joz are the fluxes in the cells containing particles in figure 8. 
When [182]-[184] are used in [181] (the result is differentiated with respect to f, keeping A~ 

constant, and [71] is used, with X replacing L), we obtain 

2 dK .2 .2 .~_ .2  + . 2  .2 2 .2 2 ~ . 2 .  d f l i  --Jo, fl, ~ J  o, a ~-~ • [186] - -  - - J o y f l y  - -  p, trzaf--jox-Jox x Jo, , 

JOx 

( l - f )  ~ f t 

[3zj0z Joz 

~YJOy Joy 

Figure 8. The equivalent of figure 3 for three-dimensional cells. 

A~z 
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The energy theorem gives 
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Fe= Fe = 1 dK [187] 
Ax YZ  IYZ  d f"  

We now wish to follow a sequence of reasoning analogous to the derivations of [75]-[79]. Instead 
of [75] we have 

Fx F~ 
- - -  +Pa+pt j2x  • [188] 

Ax Y Z  

In deriving the equivalent of [77] we must take into account the three velocity components in 
the particle-free region. The y-component is equal to Adpy/Y, which is the same as j0yfly because 
of [185]. Therefore, [77] becomes 

1 "2 2 "2 2 "2 
Pa = P0 [ Pt (] 0x + - flyJ 0y + fl:J 0~)- [189] 

Using [186]-[189] and invoking [177], the equivalent of [78] for the flow force is 

Fx • 2 E2 
--Ax=P, + P,fl~J~ + ½Pt ~go , ( - - f l ,  + ",~ ~-XOfl"~//" [1901 

i k, El 

Combining [180] with [190] and rearranging we obtain 

P, Et~(U2#I>--E2<a#>=P,~xJ2#+E2 ,+½P,~Jo,~+~'~)J. [191] 

Similar equations are valid in the y- and z-directions. Adding all three together and using [179] 
leads to 

p, E f l , j 2  + 3,2p2= 3E2P, +½p ' ~,j2 2fl,+ 3 # i E ~ + , ~ j ~ ) j ,  [1921 
i i i , j  \ El 

which may be reduced to 

P2=Pl+-2/-~iJ°' ~ +  3 j ~a--~ff [193] 

which gives the pressure difference between the phases. 
Now, P2 may be computed independently from the energy method by considering a perturbation 

in which the particle grows, under uniform strain, and changes the fluid kinetic energy in a unit 
cell while the applied potentials stay constant. The result, from [175], is 

Moreover, for each of the fl~: 

P2 = Po -- ½ P, Z J  2, \aE2/x,r,z" [194] 

[195] 

and, as in [109], for a uniform strain of the entire cell 

dXj I dE2 
? . . . .  , [196] 

3 E2 

in which case the ~l are unchanged and, using [196] in [195], 

dfl, -- 0 -- Ej Xj ~ + .~E2 ~ .  [197] 

Use of [177], [194] and [197] provides an alternative derivation of [193] and checks its validity. 
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4.2. Moving Cells 
To derive the averaged Bernoulli equation we integrate [123] over the cell as before. The results 

equivalent to [127]-[130] are: 

~-~t = v2" (u0 
aO 

- EI~ "w) +--~-,  [198] 

oo] 
pl = o-½P!(v2+uo)2+p!v2"(uo-E!~'w)+p!--~-~ dVl, [199] 

_ pI=Po--½OIV~--p!~.I~LT-I"~jV2jWj)'31-p,'-~- i [200] 

and 

and 

aO 
2 1 P! = P0 -- ½ PI v! -- ~ p! E (E~ ~/j -- 1)(v2j -- v2/) + p!-~- .  [2011 

J 

The flow force follows from the equivalents of  [117] and [119]: 

Since 

I F ) 11  -~ = -# {[p + pt(v2, + U0,) 2] dV! + (p2v~,- ai) dV2} 

I F ) i  = ~.,p, "~- ElPlV2i "~ ~2P21J29i "~-~lPl (<U20i> - -  W ~ ) -  (~2 <0r,>. 

[202] 

we may use [178] to show that 

[203] 

P = GPl I + EpI vlvl + E2P2v2v2 + ~! p! ww(¢! j~ - 1) + ~2P2 I, [207] 

which makes interesting comparison with [206] and [203]. However, to determine the "shear" 
components equivalent to [206] involves computation of  averages such as (uoxtuoyj) and is beyond 
the scope of  this paper. These averages are generally non-zero; e.g. they contribute to the ¢2tp! wiw/~ 
term in [207]. 

The average energy flux for steady flow follows from the energy transfer across a plane 
perpendicular to the i-direction due to the passage of  a complete unit cell (at velocity v2). The result 
corresponding to [142] is 

1 
IJjwj) 1 + uo,) + (-~) =-# ~[po+p!~v2j(Uoj--E! dV! l f(½P2v2--(7,)vxidV 2. [2081 

Explicit evaluation of  [2081 again requires determination of  the average X (uoluoj), which can 
only be reduced to (u02i) when wj has only one component. 

(u2,) = ~ (Uoo) 2 [205] 
J 

and, therefore, [191] can be combined with [203] with consistent nomenclature to give the flow force 
as 

+ E, plv~, + ~2P2V~, + Etp, W~2(G~, - 1 )+  E 2 ,-¢-~p, ~Joj~+--~2-~J ] [206] 

in place of  [120]. 
In a more general sense, [206] is a normal component of  the combined momentum flux and stress 

tensor. For an isotropic dispersion this is (Wallis 1989): 

Uo,-- [204] 
J 
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5. DISCUSSION 

This paper has extended earlier work (Wallis 1989) in which it is shown how the dimensionless 
resistivity, t ,  could be used to determine several properties of a dispersion of particles in a potential 
fluid flow. Once the geometry of a unit cell is defined, fl can be determined by solving Laplace's 
equation. Other properties can then be deduced by straightforward mathematics. 

The new features of the present work include: 

• Extension to three-dimensional cells in which fl becomes a tensor. 
• A new derivation of the equation of motion of a uniform array, [25] and [26], and 

the related "two-fluid model" equations, [30]-[33]. 
• Evaluation of the "interphase impulse" S ~bds' for particles, [15] and [16], and its 

relation to momentum and kinetic energy density, [41], [44], [50] and [53]. 
• Evaluation of the "flow force" for stationary, [78] and [190], and moving cells, 

[120] and [206]. 
• Derivation of the averaged Bernoulli equation for the fluid for stationary, [66] and 

[177], and moving cells, [130] and [201]. 
• Prediction of the mean pressure on the wall of the one-dimensional cells, [89], [107] 

and [113], and in the particle, [98] and [193]. 
• Derivation of the energy conservation equation for steady flow with one-dimen- 

sional cells, [144], and Bernoulli's equation for phase 2, [149], which makes it 
possible to solve for local conditions using [151]. 

• A proof that the kinetic energy density is minimized in one-dimensional flow from 
a single stagnation pressure. 

• Various results concerning the existence of solutions, forces at interfaces, time- 
varying macroscopic potentials etc. 

Unit cells of a simple structure are particularly suitable for the generation of numerical solutions 
to the microscopic flow field that can be used to check these results and to predict the behavior 
of specific systems (e.g. spheres in a pipe) (Cai & Wallis 1992). Experimental confirmation is also 
possible by constructing situations, such as small-amplitude oscillations or rapid accelerations, for 
which potential flow provides a good approximation (Cai 1992). 

It would be interesting to see how these results compare with those involving less orderly, or 
random, structures that might be analyzed using ensemble averaging. There are also questions 
about how far a continuum flow can be represented by unit cells that elongate in the direction of 
extension rather than maintaining an isotropic character. 

Acknowledgements--Part of this work was supported by the U.S. Department of Energy, Contract No. 
DEFG02-86ER13528, administered by Dr Oscar Manley. Further assistance was given by the Royal Society 
in the form of a Visiting Fellowship at University College, London, which provided the opportunity for 
encouragement by Sir James Lighthill. 

REFERENCES 

BATCHELOR, G. K. 1970 The stress system in a suspension of free-force particles. J. Fluid Mech. 
41, 545-570. 

BmSrmUWL, A. & VAN WlJNGAARDEN, L. 1984 Two-phase flow equations for a dilute dispersion 
of gas bubbles in liquid. J. Fluid Mech. 148, 301-318. 

BmSma:VEL, A. & SPOELSTP,~, S. 1989 The added mass coefficient of a dispersion of spherical gas 
bubbles in liquid. Int. J. Multiphase Flow 15, 911-924. 

CAI, X. 1992 Inertial coupling in two-phase flow: a few test cases and their impacts on two fluid 
modelling. Ph.D. Thesis, Thayer School of Engng, Darthmouth College, Hanover, NH. 

CAI, X. & WALLIS, G. B. 1992 Flow around a row of spheres in a circular tube. Phys. Fluids A 
4, 904-912. 

DREW, D. A. & WALLIS, G. B. 1992 Fundamentals of two-phase flow modelling. Presented at the 
3rd Int. Wkshp on Two-phase Flow Fundamentals, London. 



MACROSCOPIC PROPERTIES OF A TWO-PHASE POTENTIAL DISPERSION 1017 

GEURST, J. A. 1985 Virtual mass in two-phase bubbly flow. Physica A129, 233-261. 
GEURST, J. A. 1991 Virtual mass and impulse of bubble dispersions: reply to a note by van 

Wijngaarden, Int. J. Multiphase Flow 17, 815-821. 
ISFIII, M. 1975 Thermo-fluid Dynamic Theory of  Two-phase Flow. Eyrolles, Paris. 
LAMB, SIR HORACE 1945 Hydrodynamics. Dover, New York. 
SHAPIRO, A. H. 1953 The Dynamics and Thermodynamics of  Compressible Fluid Flow. Ronald Press, 

New York. 
SMEREKA, P. & MILTON, G. W. 1991 Bubbly flow and its relation to conduction in composites. 

J. Fluid Mech. 233, 65-81. 
VOINOV, O. V. & PETROV, A. G. 1977 On the stress tensor in a fluid containing disperse particles. 

PMM 41, 368-369. 
WALLIS, G. B. 1969 One-dimensional Two-phase Flow. McGraw-Hill, New York. 
WALLIS, G. B. 1989 Inertial coupling in two-phase flow. Multiphase Sei. Technol. 5, 239-361. 
WALLIS, G. B. 1990 On Geurst's equations for inertial coupling in two-phase flow. In Two-phase 

Flows and Waves (Edited by JOSEPH, D. D. & SCHAEFFER, D. G.), pp. 150-164. Springer, New 
York. 

WALLIS, G. B. 1991 The averaged Bernoulli equation and macroscopic equations of motion for the 
potential flow of a dispersion. Int. J. Multiphase Flow 17, 683-695. 

WALLIS, G. B. 1992a Some tests of two-fluid models for two-phase flow. Presented at the 
U.S.-Japan Semin. on Two-phase Flow Dynamics, Ohtsu, Japan, 1988. In Dynamics of Two-phase 
Flow (Edited by JONES, O. C. & MICHIYOS8I, I.). CRC Press, New York. 

WALLIS, G. B. 1992b The concept of polarization in dispersed two-phase flow. Presented at the 
U.S.-Japan Semin. on Two-phase Flow, Berkeley, CA. 

ZUaER, N. 1964 On the dispersed two-phase flow in the laminar flow regime. Chem. Engng Sci. 
19, 897-917. 


